# Phoenix Mission Design Review



November 11, 2016

## Introduction

PHOENIX

Sarah Rogers

#### Review Agenda

| Timeframe | Focus                               | Presenter(s)                                 |
|-----------|-------------------------------------|----------------------------------------------|
| 1:00-1:15 | Introduction & Mission Overview     | Sarah Rogers                                 |
| 1:15-1:35 | Science Objective & Requirements    | Eleanor Dhuvetter, Giana Parisi, Wendy Nessl |
| 1:35-1:40 | Concept of Operations               | Jaime Sanchez de la Vega                     |
| 1:40-2:00 | System Overview                     | Andy Tran, William Merino                    |
| 2:00-2:20 | ADCS                                | Ryan Fagan                                   |
| 2:00-2:15 | Communications                      | Kregg Castillo                               |
| 2:15-2:35 | Mission Operations                  | Sarah Rogers                                 |
| 2:35-2:40 | Ground Station                      | Jeremy Jakubowski                            |
| 2:40-2:50 | Break                               |                                              |
| 2:35-2:45 | EPS                                 | Raymond Barakat                              |
| 2:45-2:55 | Opto-Mechanics                      | Jesus Acosta                                 |
| 2:55-3:15 | Structures                          | Brody Willard                                |
| 3:15-3:35 | Flight Software                     | Nicholas Downey, Bradley Cooley              |
| 3:35-3:45 | Thermal                             | Ryan Czerwinski                              |
| 3:45-4pm  | Program Budget, Schedule, and Risks | Sarah Rogers                                 |

#### Introduction

#### • Purpose of Review

- Overview and assessment of the design of Phoenix per the development conducted over the the fall 2016 semester
- Shall review the current timeline and next steps of the project in preparation for FlatSat development and PDR in mid-February of 2017
- Primary questions that we aim to answer:
  - Is there a design constraint that is not being considered?
  - Are there areas of the design that need better justification, and how might this be obtained?
  - Is the design able to support a science return to its full extent?

#### Scope

- Primary mission objective of Phoenix as well as all science requirements
- Design of each subsystem and all hardware planned for in-flight operations
- Plans for flatsat development in the spring semester
- Schedule and next steps for development, as well as critical points the team has yet to address and challenges faced

#### **Review Outline**

- Mission Objective
  - Scientific objective definition and overview
    - Detailed explanation of refined science objective
    - Science requirements and traceability matrix
    - Science timeline
- Concept of Operations
  - Diagram and description of on-orbit modes and operations
- Satellite Overview
  - Outlines for system and subsystems:
    - Top Level Requirements
    - System/Subsystem Overview
      - Design of each subsystem to meet science requirements
      - Hardware trade studies and specifications
    - Budgets
      - mass, power, link, momentum (tip-off rates)
    - Interface block diagrams for OBC and EPS
    - Top Level Risk assessments
    - Challenges faced and next steps

#### **Review Outline**

- Mission Operations Outline
  - Current plan of operations to support science return
  - Ground Station overview
  - Top level Requirements, challenges faced, and next steps
- Budget and Schedule overview
  - Gantt chart detailing flatsat development, milestone dates, and preliminary integration and test plans for Phoenix
  - Budget outline of funds contributed to the Phoenix Project

#### **Mission Overview**

- Undergraduate-led effort to design and develop 3U CubeSat to study the effects of Urban Heat Islands in the US
  - Funded and overseen by NASA's USIP Program
  - Centered on interdisciplinary collaboration between design, science, engineering, and public relations
- Phoenix will map the surface temperatures of 7 selected cities over the course of a ~1 year desired mission lifetime in LEO
  - The science focuses specifically on understanding how Local Climate Zones (LCZs) determine the UHI Effect
- Phoenix will be developed over 18 months and targeted to be launch ready by March 8, 2018
  - Readiness date is a target, has not been locked in.
  - Official launch platform and date has yet to be scheduled

#### **Phoenix Mission Life Cycle**



#### Current Timeline: Updates since SRR in July 2016

- Closer study of overall science objective
  - Literature review and objective refinement
- Verification of hardware choices to meet science mission objective
  - System assessment and design adjustments
  - Requirements refinement, risk reassessment
- Purchases made of engineering models
  - Currently have OBC development kit, FLIR test camera, waiting on ADCS engineering model
  - Flatsat development to begin over winter break, pursue further during the Spring Semester

#### **Current Timeline**

- Submitting for a launch date through the NASA CSLI Program
  - Manifestation of launch will come in February 2017
  - Final launch notification will come in the later months of August 2017
  - Requesting launch date as close to mission readiness date as possible to maximize science return
- Licensing Process
  - Initial application for NOAA imaging license completed
  - Contact initiated with frequency spectrum manager to assist in frequency band allocations

# Phoenix Science Objective

OHOENIX

Wendy Nessl, Eleanor Dhuyvetter, Gianna Parisi, Kezman Saboi

#### Science Background

- Urban Heat Island (UHI) is the manifestation of city core air temperatures being warmer than the adjacent rural area's air temperature, as a result of the urban materials.
- Surface Urban Heat Island (SUHI) is the phenomenon of a city's remotely sensed surface temperatures being warmer than the adjacent rural landscape.
- Cities all have various compositions in terms of building materials, the layout and grouping of building types (suburban, industrial, etc.), and human activity.
- These areas can be categorized into classes called Local Climate Zones (LCZs).
- The fragmentation of the LCZs likely affects the SUHI signature.

#### **Temporal Notes**

• **Diurnal:** Interested in times with larger heating/cooling rates of the surfaces.

1) Heating -> around noon - most intense incoming radiation.

2) Cooling -> around 2-3 hours after sunset - can measure stored ground heat coming back up to surface.

 Annual: Intensity of incoming solar radiation changes throughout year. We will consider 2 week time frames for consistent incoming solar radiation.



Figure 35: Diurnal surface and air temperatures and the dry convection surface flux terms for full summer sun illumination conditions.

## Local Climate Zone Classes



• These Local Climate Zone Classes depend on the building materials, the structure of the lay out, and human activity.

#### Science Traceability Matrix

| Science Goal:                                                | Science Objectives:                                                                                                                                    | Measurement Requirements |                     |  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|--|
|                                                              |                                                                                                                                                        | Physical Parameters      | Observables         |  |
| To study how city composition,<br>using Local Climate Zones, | 1) Categorize LCZs for each city.                                                                                                                      | Surface Temperature      | Infrared Imagery    |  |
| island signature across<br>various cities in the U.S.        | <ul> <li>2) Classify city contiguity according to LCZ layout.</li> <li>3) Analyze the SUHI as a function of the spatial layout of the LCZs.</li> </ul> | City Composition         | Local Climate Zones |  |
|                                                              |                                                                                                                                                        | City Contiguity          | Landscape metrics   |  |
|                                                              |                                                                                                                                                        |                          |                     |  |

#### Science Traceability Matrix

| Instrument Requirements   |                                                                                                                                      | Projected Performance                                                                                                                                                 | Mission Requirements (Top Level)                                                                  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|                           |                                                                                                                                      |                                                                                                                                                                       |                                                                                                   |
| Temperature<br>Resolution | 100 mKelvin                                                                                                                          | 40 mKelvin                                                                                                                                                            | City mosaics to be compiled with imagery taken at similar solar noon angles.                      |
| Spatial Resolution        | 100 meters/pixel                                                                                                                     | 68 meters/pixel<br>( <i>best case</i> )<br>110 meters/pixel<br>( <i>worst case</i> )                                                                                  | Science team will provide geographic coordinates of where images shall be taken within each city. |
| Wavelength Range          | 10.5-12.5 microns                                                                                                                    | 10.5 - 12.5 microns                                                                                                                                                   | Precise date, location, and time of image capture should be collected with each image taken.      |
| Temporal Coverage         | <ol> <li>2 times of day; at<br/>solar noon and 2 hours<br/>after sunset</li> <li>Summer season (May 1st -<br/>August 1st)</li> </ol> | <ol> <li>at solar noon and 2 hours after<br/>Sunset, with additional images<br/>taken throughout the day</li> <li>Summer season (May 1st - August<br/>1st)</li> </ol> | The camera should be on nadir, or with a +/- 25 degrees of error.                                 |

#### Phoenix LCZ classification:



| Mission Objective |                                                                                                                                           |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| PHX - 1.01        | To study how city composition using Local Climate Zones affects the surface urban heat island signature across various cities in the U.S. |  |  |  |

| <b>Mission Succes</b> | ss Criteria                                                                                                                          | Rationale                                                                                                                                                                                       |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID                    | Criteria                                                                                                                             | Rationale                                                                                                                                                                                       |
| PHX - 2.01            | Phoenix, AZ, shall be compared to Los<br>Angeles, CA, with one picture of each city,<br>using coordinates given by the science team. | Shall measure the various surface<br>temperatures of cities, in the form of infrared<br>imagery. LA and Phoenix were chosen<br>because in May both cities will be in summer<br>time conditions. |
| PHX - 2.02            | Thermal images shall be taken at local solar noon and 2-3 hours after local sunset.                                                  | To capture maximum SUHI intensity, images<br>will be taken at two specified times per day:<br>when surface heating and surface cooling are<br>at their peaks.                                   |
| PHX - 2.03            | Phoenix Satellite shall capture PHX-2.01 in the summer season.                                                                       | Summer season defined as May 1st through<br>August 1st. The SUHI signature is strongest<br>during the summer months.                                                                            |

| Science Requirements |                                                                                                                               |                                                                                                                                                                                                                   |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ID                   | Requirement                                                                                                                   | Rationale                                                                                                                                                                                                         |  |  |
| PHX - 3.01           | All temperature profiles shall be thermal images<br>that shall have a spatial resolution of at least 100<br>meters per pixel. | To capture a Local Climate Zone which are no smaller than 10 meters <sup>2</sup> .                                                                                                                                |  |  |
| PHX - 3.02           | Thermal camera shall have a temperature resolution of [100] mK                                                                | The temperature changes we are looking for are to the 100 mK. Link to Departure from Traverse Mean Temperature.                                                                                                   |  |  |
| PHX - 3.03           | The Cubesat shall be pointed on nadir with up to +/- 25 degrees of error when taking an image.                                | The temperature of the side of the building will be<br>different than the top of the building and be<br>inconsistent with data. In addition, the tall<br>buildings will block surrounding buildings and<br>areas. |  |  |
| PHX - 3.04           | Images shall collect infrared radiation in the wavelength range of 10.5 um - 12.5 um                                          | This is the wavelength range that allows us to capture thermal data. This range is the best for avoiding water vapor and other molecules in the atmosphere.                                                       |  |  |

| Science Requirements |                                                                                                                         |                                                                                                                                                                                                                    |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ID                   | Requirement                                                                                                             | Rationale                                                                                                                                                                                                          |  |  |  |
| PHX - 3.05           | Images shall be taken at the<br>same noon solar altitude angle<br>(within 2 weeks of each other)                        | This ensures that the images will have the same incoming radiation (solar flux), so we can develop a more accurate mosaic.                                                                                         |  |  |  |
| PHX - 3.06           | All thermal images shall<br>include the precise date and<br>time the data was taken within<br>a +/- 10 minute accuracy. | Accurate orbital data is needed to create air temperature maps to<br>overlay the infrared images with, as well as an accurate time and date<br>to pull out recorded air temperatures and match up the right times. |  |  |  |
| PHX - 3.07           | All thermal images shall have<br>longitude and latitude with<br>each picture +/-1 degree.                               | This gives the science team a more accurate picture of where the image location is.                                                                                                                                |  |  |  |

| ID         | Requirement                                               | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PHX - 3.08 | Images shall be in ASCII form when given to science team. | This text file will be loaded into ArcMap where the science team can<br>use GIS software to create and analyze the imagery. The imagery will<br>be available to the public.                                                                                                                                                                                                                                                                                                                                                 |
| PHX - 3.09 | Images should be in ideal conditions.                     | Clear skies will give the best chance for total capture of the surface,<br>interfering clouds will absorb surface radiation that we want to capture<br>with the camera. Clear skies is defined as less than 10% cloud cover.<br>We also want to wait three days after a synoptic scale storm passes<br>through the study area to allow for the atmosphere to return to<br>average climatic conditions of that location. Ideal conditions are a<br>priority, however we will still accept >10% cloud cover for case studies. |

#### **Science Development Timeline**



# Concept of Operations

HOENIX

....

Jaime Sanchez de la Vega



#### **Concept of Operations**



#### **Operation Modes**



#### **Primary Operation Modes**

- Deployment
  - Phoenix deploys from the LV and begins its orbit about the US
  - Communications and EPS systems are initialized
  - Health is assessed and test images are taken before beginning official mission operations
- Science Mode
  - Occurs while the camera is powered on and Phoenix collects thermal images over the selected cities
  - Satellite will track the targeted cities based on coordinates provided by the science team
  - Images will be taken as Phoenix is pointed Nadir over the target cities to collect the most accurate thermal readings from direct orientation over a location

#### Safe Mode

- The Camera is off and the z axis is oriented parallel to the earth
- Mode is primarily operational while satellite is not over the US
- Batteries recharge and operations are prepared for next pass over the US
- Health is monitored by mission operations staff

#### **Operation Modes**

- Survival
  - Occurs only in the cases where satellite health is at critical levels
  - Only the most essential components are operational to conserve power
  - State of systems is assessed in order to restore the satellite to optimal health

# Satellite Overview

PHOENIX

William Merino, Andy Tran

#### System Layout



#### System Layout - Inside Detail



#### Changes Since SRR

- Updated requirements to directly stem to the science objectives
- Updates and verifications to system design
  - Deployable solar panels
  - Increased bandwidth in radio and antenna selection
    - S-Band now incorporated with UHF
    - Deployable lens cover to utilize S-Band patch antenna, and lens protection during launch
- Updated mass and power budget assessments
- Flatsat development
  - Fits within budget constraints
  - OBC dev board and EM camera purchased and received

#### System Requirements

| ID    | Requirement                                                                                                                                                                                                                          | Rationale                                                                                                            | Parent<br>Requirement    | Verification                                   |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------|
| SYS-1 | The system shall be a cubesat that<br>utilizes the CalPoly 3U Cubesat form<br>factor, with a mass not exceeding<br>4kg                                                                                                               | A cubesat is necessary for high<br>repeatability of target imaging. 3U<br>to accommodate bus and payload<br>volumes. | PHX - 1.01<br>PHX - 3.05 | Examination                                    |
| SYS-2 | The cubesat shall conform to the<br>CalPoly Cubesat Design<br>Specification (v12) and CalPoly<br>PPOD standards                                                                                                                      | To ensure proper integration,<br>operational requirements, and<br>launch environment survival                        | SYS-1                    | Test, Analysis,<br>Demonstrate,<br>Examination |
| SYS-3 | The CubeSat shall be designed to<br>have an in-orbit lifetime of at least<br>12 months, and operate in low earth<br>orbit altitudes from 400 -500 km,<br>with mission time frame covering<br>summer months.                          | Enough time to ensure mission<br>success and proper coverage for<br>imaging, as well as resolution<br>requirements.  | PHX-3.01                 | Analysis                                       |
| SYS-4 | The Cubesat shall withstand all<br>appropriate mission environments to<br>be encountered from fabrication and<br>assembly through integration, test,<br>transport, ground operations,<br>storage, launch and on-orbit<br>operations. | To ensure cubesat survival and mission success.                                                                      |                          | Test, Analysis,<br>Demonstrate,<br>Examination |

## System Requirements

| ID    | Requirement                                                                                                                                                    | Rationale                                                                | Parent<br>Requiremen<br>t | Verification   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------|----------------|
| SYS-5 | The CubeSat shall survive<br>within the temperature<br>range of -150 degC to<br>+100 degC from the time<br>of launch until the end of<br>the mission lifetime. | Cubesat health safety in regards to low earth orbit temperature extremes |                           | Test, Analysis |
| SYS-6 | The Cubesat shall monitor<br>all subsystems and<br>payload in each mode of<br>operation                                                                        | Cubesat health safety                                                    |                           | Demonstration  |
| SYS-7 | The Cubesat shall be<br>compatible with the ASU<br>ground station for both<br>uplink of commands and<br>downlink of orbit and<br>science data                  | To utilize ASU's mission operations center                               |                           | Analysis, Test |

## System Requirements

| ID     | Requirement                                                                                                                                                  | Rationale                                                                                                                        | Parent<br>Requirem<br>ent | Verification   |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|
| SYS-8  | The CubeSat shall maintain<br>parameters (power/temps) for<br>each of the components to<br>operate nominally in all modes<br>of operation.                   | For subsystems to meet power and environmental parameters                                                                        |                           | Test           |
| SYS-9  | The CubeSat shall be able to<br>recover from tip-off rates of up<br>to 16 deg / sec (nominal<br>conditions).                                                 | To recover from spin associated with deployment from PPOD. 16 deg/sec is a high estimate of tip off rate for worst case scenario |                           | Analysis, Test |
| SYS-10 | The Cubesat bus shall orient<br>and stabilize the payload to<br>accurately target and track<br>selected cities for imaging<br>and communication<br>purposes. | For proper coverage of select cities and maintain spatial resolution requirements                                                |                           | Demonstrate    |
### System Requirements

| ID     | Requirement                                                                                                                                                                                                                                                                                  | Rationale                                                                           | Parent<br>Requireme<br>nt | Verificatio<br>n               |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------|--------------------------------|
| SYS-11 | The Cubesat payload shall capture<br>long wave infrared images between<br>wavelengths of 10.5um and 12.5um,<br>with a field of view capable of capturing<br>a selected city targets                                                                                                          | To satisfy science requirements                                                     | PHX-3.04                  | Analysis, test,<br>demonstrate |
| SYS-12 | The Payload will be accommodated at<br>one end of the CubeSat, on a 10 mm x<br>10 mm face — the -Z face using the<br>CubeSat Design Specification<br>reference frame. The face shall not be<br>available for solar cells, or for any<br>other subsystem that may block the<br>field of view. | To know which way to point the cubesat,<br>and that the payload fov is unobstructed |                           | Test,<br>demonstrate           |

#### **Orbit Analysis**

- 400-450 km altitude selected based on resolution and mission lifetime still need more analysis
- Orbit inclination based on maximum passes over target cities for a minimum mission life of 6 months
  - Inclinations of 45, 50, 55, and 60 degrees analyzed
  - 45 degree inclination selected due to frequency of passes over target cities

| Inclination<br>(Degrees) | Chicago | Phoenix | Los<br>Angeles | Houston | Minneapolis | Philadelphia | Atlanta | Total<br>Passes |
|--------------------------|---------|---------|----------------|---------|-------------|--------------|---------|-----------------|
| 45                       | 176     | 90      | 93             | 78      | 253         | 137          | 90      | 917             |
| 50                       | 105     | 74      | 76             | 69      | 137         | 94           | 76      | 631             |
| 55                       | 84      | 61      | 62             | 64      | 95          | 80           | 69      | 515             |
| 60                       | 74      | 62      | 59             | 58      | 82          | 68           | 58      | 461             |

#### **Orbit Next Steps**

- Need launch date for optimal analysis
- Raising altitude versus cubesat orientation study for mission lifetime optimization
  - New solar panel design yields more atmospheric drag and reduces lifetime
- Assessing imaging timeframes with various right ascension angles
  - To verify collecting science data during the required solar noon altitude and after sunset within the required 2 week timeframe

#### **Spacecraft Resources**

Systems keeps track of the following resources:

- Mass Budget
- Volume Budget

- Power/Energy Storage Budget See Power Slides
- Data/Link Budget See Comms Slides
- Momentum Budget development by ADCS

#### Mass and Volume Budget

| Subsystem                                        | Component                                                              | Model                                          | Mass (kg)                        | Volume<br>(cm³)  | Dimension<br>(cmxcmxcm)                                                              |
|--------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------|----------------------------------|------------------|--------------------------------------------------------------------------------------|
| Attitude Determination and Control System (ADCS) | ADCS                                                                   | MAI-400                                        | 0.694                            | 491.15           | 10.0 x 10.0 x 5.59                                                                   |
| Communications (Comms)                           | VHF/UHF Transceiver<br>S-Band Transmitter<br>S-Band Patch              | Nanocom AX100<br>TX-2400 S-Band<br>Transmitter | 0.0245<br><0.1                   | 16.90            | 6.50.x 4.00 x 0.720<br>6.80 x 3.50 x 1.50<br>TBD                                     |
| Electronic Power System<br>(EPS)                 | Battery<br>EPS Motherboard<br>2X 3U Solar Panels<br>2X 2U Solar Panels | Nanopower BP4<br>Nanopower P60                 | 0.270<br>0.176<br>0.270<br>0.138 | 190.26<br>251.34 | 9.02 x 9.59 x 1.24<br>9.02 x 9.59 x 2.56<br>10.0 x 10.0 x 30.0<br>10.0 x 10.0 x 20.0 |
| On-Board Computer (OBC)                          | On-Board Computer<br>Flight Motherboard                                | NanoMind A3200<br>NanoDock DMC-3               | 0.014<br>0.051                   | 16.90<br>70.10   | 6.51 x 4.01 x 0.670<br>9.20 x 8.89 x 1.85                                            |
| Opto-Mechanics                                   | Thermal Camera<br>100 mm Lens<br>Lens Cap<br>IR Filter                 | FLIR Tau 2                                     | 0.0512                           | 87.82            | 4.45 x 4.45 x 4.45<br>Diam. = 8.2 Length = 10                                        |
| Thermal                                          | TBD                                                                    | TBD                                            | TBD                              | TBD              | TBD                                                                                  |
| Structural                                       | Chassis                                                                | Custom 3U or Off<br>the shelf                  | 0.500                            | 3000.00          | 10.0 x 10.0 x 30.0                                                                   |
| Total Mass Estimate: 2.89 Kg                     | (<4Kg)                                                                 |                                                |                                  |                  |                                                                                      |

#### **Requirements Verification**

- Environmental testing will be performed to the levels in GEVS
- Requirements will be measured from the spacecraft down to the component level
- Verification by test will have testing procedures that include testing steps for requirements.
- The science team will work directly with engineering to ensure all spacecraft requirements support the mission objective
  - Will verify camera features, assess image clarity, and guide target tracking and data accuracy with given city coordinates
  - Verify ability to capture all local climate zones at specified times per day

#### System Risks

|   | σ |
|---|---|
|   | О |
|   | О |
| _ |   |
| • | _ |
| • | Ð |
| _ | × |
| : | ¥ |

|  |  | SR-2 | SR-4<br>SR-5 |
|--|--|------|--------------|
|  |  |      | SR-1<br>SR-3 |

Consequences

| Trend     | Approach     |
|-----------|--------------|
|           | A - Accept   |
| Uorsening | M - Mitigate |
| Unchanged | R - Research |
| New       | W - Watch    |

| ID   | Trend | Risk                                            | Mitigation Strategy                                                | Approach |
|------|-------|-------------------------------------------------|--------------------------------------------------------------------|----------|
| SR-1 |       | Not surviving launch environment                | Extensive testing to<br>launch vehicle<br>specifications           | W        |
| SR-2 |       | Not surviving low<br>earth orbit<br>environment | Use space rated<br>hardware and testing<br>hardware specifications | Μ        |
| SR-3 |       | Not deploying from PPOD                         | Strict compliance with design and materials specification          | Μ        |
| SR-4 |       | Non deployment of solar panels                  | Stowed placement which doesn't obstruct adcs sensors               | М        |
| SR-5 |       | Non deployment of lens cap                      | Robust release<br>mechanism                                        | М        |

### System Next Steps

- 1. Subsystem testing plans and procedures
  - a. Procedures for flatsat design, considerations for final hardware testing
- 2. More defined plan for verification and validation of system requirements
- 3. Updates to budget information
- 4. FlatSat development
  - a. Will test flight software and EPS design
  - b. Engineering models ordered to simulate ADCS, flight software, camera features
    - i. battery model will be either ordered or created by team (undecided)
    - ii. Software dev board and camera em are in
- 5. Refine mode operations for mission life based on science objective
- 6. Discussion to outline stricter system/subsystem schedule for testing and development
- 7. Keep track of band filter trade and selection-Opto-Mechanics
- 8. Lens cap deployment mechanism Structures
- 9. Trade study on optimal orientation during safe mode

# Subsystem Overview

PHOENIX

# ADCS

Ryan Fagan

#### **ADCS** Overview

#### MAI-400 0.5U ADCS System from Maryland Aerospace

- Pointing Knowledge Sensors
  - 6 External Sun Sensors
  - 1 MEMS Magnetometers
  - 2 IR Earth Horizon Sensors
  - 1 MEMS Gyroscope
- **Pointing Control Devices** 
  - 3 Reaction Wheels
  - 3 Magnetorquers











### **ADCS** Overview

#### Capabilities

- Within 7 deg half angle
  - Better than 1 deg pointing accuracy
  - Up to 0.1 deg pointing knowledge
  - $\circ$   $\,$  Does not work with sun in FOV  $\,$
- Within 50 deg half angle
  - 3-1 deg pointing accuracy
  - Approx. 1 deg Pointing knowledge
  - Does not work with sun in FOV
- All other angles
  - Up to 5 deg pointing accuracy
  - Does not work in eclipse

### ADCS Top Level Requirements

| ID    | Requirement                                                                                                           | Rationale                                                                | Parent<br>Requirement | Verification        |
|-------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------|---------------------|
| ADC-1 | The ADCS shall provide<br>knowledge of the orientation<br>of the spacecraft relative to<br>the Earth.                 | System Definition                                                        | SYS-10                | Demonstration       |
| ADC-2 | The ADCS shall provide<br>knowledge of the angular<br>motion of the spacecraft with<br>respect to the inertial frame. | System Definition                                                        | SYS-10<br>SYS-12      | Demonstration       |
| ADC-3 | The ADCS shall provide<br>control of all axes of the<br>spacecraft with respect to the<br>inertial frame.             | System Definition                                                        | SYS-12                | Demonstration, Test |
| ADC-4 | The ADCS shall be capable of pointing up to 75 degrees off nadir.                                                     | Necessary to accurately point at targets to fulfill science requirements | SYS-10                | Analysis, Test      |

### ADCS Top Level Requirements

| ID    | Requirement                                                                                                                 | Rationale                                                         | Parent<br>Requirement | Verification   |
|-------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------|----------------|
| ADC-5 | The ADCS shall be capable<br>of recovering from a tip off<br>rate of 16 deg sec                                             | Ensures the satellite can become operational after being deployed | SYS-9                 | Analysis, Test |
| ADC-6 | The ADCS shall be capable<br>of placing science targets<br>within the field of view of the<br>Camera during data collection | Mission success                                                   | SYS-10                | Demonstration  |
| ADC-7 | The ADCS shall be capable interfacing with OBC                                                                              | Ease and reliability of use                                       |                       | Test           |

#### **Tip-Off Momentum Analysis**

- Current model based on average magnetic field strengths.
- Assumptions:
  - ISS orbit
  - Rotation about the x-axis of the spacecraft with Ixx  $\approx$  0.0799 kgm<sup>2</sup>
  - Average net magnetotorquer dipole moment of 0.108 Am
  - Average current draw of 0.102 A
  - Average voltage of 5 V

#### • Results:

| 0 | Min : | $\omega \approx 0$ ,           | B ≈ 48.7 µT, | <i>τ</i> ≈ 5.26 μNm, | T≈0 min,     | E≈0 Whr                      |
|---|-------|--------------------------------|--------------|----------------------|--------------|------------------------------|
| 0 | Avg : | $\omega \approx 6^{\circ}/s$ , | B ≈ 36.6 µT, | <i>τ</i> ≈ 3.95 μNm, | T ≈ 35 min,  | $E \approx 0.30 \text{ Whr}$ |
| 0 | Max:  | ω ≈ 16°/s,                     | B ≈ 23.3 µT, | <i>τ</i> ≈ 2.52 μNm, | T ≈ 148 min, | $E \approx 1.26$ Whr         |

- Sources
  - NOAA: <u>http://www.ngdc.noaa.gov/geomag-web/#igrfwmm</u>
  - MAI Documentation

#### ADCS - Top Level Risks

|        |  |       |       | ID    | Trend | Risk                          | Mitigation Strategy                                  | Approach |
|--------|--|-------|-------|-------|-------|-------------------------------|------------------------------------------------------|----------|
|        |  |       |       | ACR-1 |       | Sensing Equipment<br>Failure  | Use long mission life parts, redundancy              | М        |
| lihood |  |       |       | ACR-2 |       | Actuator Equipment<br>Failure | Use long mission life parts,redundancy               | М        |
| Like   |  | ACR-3 |       | ACR-3 |       | Software bug/<br>Failure      | Ability to upload<br>firmware, adjust bias,<br>modes | М        |
|        |  | ACR-1 | ACR-2 |       |       |                               |                                                      |          |

#### Consequences

| Trend     | Approach     |  |  |
|-----------|--------------|--|--|
|           | A - Accept   |  |  |
| Uvrsening | M - Mitigate |  |  |
| Unchanged | R - Research |  |  |
| New       | W - Watch    |  |  |

#### **ADCS Next Steps and Challenges**

- Full characterization of the torque environment.
- Create an accurate Inertia model to perform calculations with.
- Potential changes to basic assumptions depending on launch provider.
- Improve and reduce settling time estimates.
  - Currently for a 5 deg change T<60 seconds (an average pass is 35-40 seconds)
  - This was an operation satellite weighing 1kg more with a very conservative approach (wheels are rated to a max RPM of 10,000 only 200 RPM was reached
  - Able to maintain 0.5 deg accuracy during operation.
  - Initial estimations with our mass and a more aggressive approach suggests 20 seconds by adjusting gains
- Effects of sensor obstructions on pointing knowledge
  - With current layout less than 1 deg delta for W-FOV

# Communications

Kregg Castillo

#### **Comms Overview**

Changes from the SRR:

- UHF frequency transmissions have been restricted by the FCC to using a bandwidth no larger than 12.5kHz.
- Because of this, we have determined that an additional transmitter in a higher frequency (S-Band) should be included for transmitting the larger science data products.
- The UHF transceiver proposed in the proposal will also be included in the design. Under normal operations, this will system will be responsible for transmitting health/ monitoring telemetry and receiving incoming ground station commands.
- For transmitting, the satellite's main data control processor will determine the device to send the data to. This will allow the satellite to have a redundant system for downlinking data.

### **Communications Requirements**

| ID    | Requirement                                                                                                   | Rationale                                                                                                                                     | Parent<br>Requirement | Verification           |
|-------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|
| COM-1 | Communication systems shall have uplink capability                                                            | To notify the satellite of a change to mission schedule and/or configuration parameters.                                                      |                       | Test                   |
| COM-2 | Communication system shall<br>have a high data rate<br>utilizing a higher frequency<br>band                   | Satellite will need to downlink at rates higher than what FCC allows for UHF bands. > 9600 bps @ < 12.5kHz bandwidth                          |                       | Demonstration,<br>Test |
| COM-3 | Communications system<br>shall support a required<br>downlink of 378 images over<br>a 1 year mission lifetime | Meets objective range of data science wishes to collect over a year in space                                                                  |                       | Test                   |
| COM-4 | System transmission power<br>shall remain within limits of<br>EPS                                             | EPS provides a limited amount of power.<br>Transmission data rates and transmission<br>bandwidths must transmit power within these<br>limits. |                       | Analysis, Test         |
| COM-5 | Dimensions of antenna shall<br>fit the dimensions specified<br>by the FCC                                     | Specified by the FCC                                                                                                                          |                       | Demonstration          |

#### **Comms Hardware Overview - UHF**

#### • UHF Transceiver

- Model: GomSpace AX100
- Will be used for uplink commands
- Compatible with flight computer A3200
- UHF Monopole Antenna
  - Will utilize a "tape measure" design for UHF uplink commands
    - Standard tape measure fused to a conductive aluminum base, attached to the lens cap
    - Folds flush against solar panels
  - Designs previously done by: CU Boulder, University of Michigan, NASA
  - Tentative plan: will be machined at ASU





#### S-Band Hardware

- S-Band Transmitter
  - Model: TX-2400
  - Used for payload downlink only
- S-Band Patch Antenna will allow for optimal downlink of thermal images and orbital data
  - Deployable lens cap applied to design to support choice of bandwidth
  - Directed antenna placed to coincide with payload direction
  - Specific hardware is still under study





### S-Band Transmitter Trade Study

| Manufacturer            | Quasonix                                                                                                                                                                                                     | Gomspace                         | Nano Avionics                                  | SpaceQuest            |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------|-----------------------|
| Model                   | nanoTX                                                                                                                                                                                                       | NanoCom S100                     | Cubesat S-Band Transmitter                     | TX-2400               |
| Modulation              | PCM/FM, SOQPSK-TG or Multi-h CPM                                                                                                                                                                             | QPSK                             | DQPSK                                          | FM,FSK                |
| Downlink<br>Frequencies | Lower L band (1435.5 MHz - 1534.5 MHz)<br>Upper L band (1750.0 MHz - 1855.0 MHz)<br>Lower S band (2200.5 MHz - 2300.5 MHz)<br>Upper S band (2289.5 MHz - 2394.5 MHz)                                         | 2200 – 2290 MHz                  | 2,200 - 2,300 MHz                              | 2000 – 2400 MHz       |
| Data Rate               | .1 – 28 Mbps                                                                                                                                                                                                 | 1.5 kbps - 25<br>Mbps            | 1.06 Mbps                                      | 56kbps-6Mbps          |
| Power<br>Consumption    | <ul> <li>8.4 W when transmitting @ 10 mW</li> <li>12.6 W when transmitting @ 1 W</li> <li>16 W when transmitting @ 2 W</li> <li>28 W when transmitting @ 5W</li> <li>36 W when transmitting @ 10W</li> </ul> | Not Specified                    | 4.5 – 7.5 W                                    | 6.4-25.6 W            |
| Interface               | TTL or TIA/RS-422 (RS-422)                                                                                                                                                                                   | CSP, CAN, LVDS,<br>I2C and SSMCX | 12 way SMC connector (data, power supply, I/O) |                       |
| Transmit<br>Power       | 10 mW, 1 W, 2 W, 5 W, or 10 W                                                                                                                                                                                | up to 2W                         | 500 mW                                         | 1-2.5 W, 5 W or 10 W  |
| Dimensions              | 1.250" x 3.400" x 0.300"                                                                                                                                                                                     | 91.9 mm x 88.7<br>mm x 8.6 mm    | 95 x 46 x 15 mm                                | 68mm x 35mm x<br>15mm |
| Mass                    | 36 - 64 g                                                                                                                                                                                                    | 74.2 g                           | 75 g                                           | 70 g                  |

#### S-Band Patch Antenna Trade Study

| Manufacturer               | Surrey                      | ClydeSpace                  | Endursat                              |
|----------------------------|-----------------------------|-----------------------------|---------------------------------------|
| Model                      | SSTL S-band Patch Antenna   | CPUT S-Band Patch Antenna   | Cubesat S-Band Transmitter            |
| Frequencies                | 2-2.5GHz                    | 2.4-2.483GHz                | 2.3-2.5GHz                            |
| Gain(Boresight)            | 6dBi                        | 8dBi                        | 8.3dBi                                |
| Beam Width<br>(0dBi angle) | 60 degrees                  | 60 degrees                  | 71 degrees                            |
| Polarization               | Right or Left Hand Circular | Right or Left Hand Circular | Left Hand Circular                    |
| Recommended<br>Data Rates  | 4Mbps                       | 2Mbps                       | 4Mbps                                 |
| Max Radiated<br>Power      | 5W                          | 2W                          | 4W                                    |
| Dimensions                 | 82mm x 82 mm x 20 mm        | 76 mm diameter x 3.8mm      | 98mm x 98 mm x 12mm<br>(Configurable) |
| Mass                       | <80g                        | 50g                         | 64g                                   |

#### Link Budget Analysis

UHF Uplink Frequency: UHF Downlink Frequency: S-Band Downlink Frequency

UHF Uplink Data Rate: UHF Downlink Data Rate: S-Band Downlink Data Rate: 430 MHz 440 MHz 2340 MHz

9600 bps 9600 bps 3 Mbps

#### ASU Ground Station(GS):

EIRP:

G/T:

Yagi 1(UHF): 32.19 dBW Yagi 2(UHF): 28.99 dBW Dish (S-Band): 46.99 dBW

Yagi 1(UHF): -7.35 dB/K Yagi 2(UHF): -10.55 dB/K Dish(S-Band): 10.04 dB/K

#### **Phoenix Satellite:**

EIRP:

Monopole(UHF): -2.51 dBW Patch(S-Band): 8.48 dBW

G/T:

Monopole(UHF): -23.98 dBW

S-Band transponder parameters: RF Transmit Power: 2.5 W Line Loss: 1.5 dB Patch Antenna:

> Gain: 6 dBi Beamwidth: 60°

| Elev                                | ation angle       | 15°      | 25°   | 45°   | 65°   |
|-------------------------------------|-------------------|----------|-------|-------|-------|
| Dis                                 | tance(km)         | 1133     | 810   | 526   | 420   |
|                                     | Eb/No to Yagi 1   | 30.07 dB | 32.98 | 36.73 | 38.70 |
| <b>Downlink</b><br>(Ground Station) | Eb/No to Yagi 2   | 26.93    | 29.84 | 33.59 | 35.56 |
|                                     | Eb/No to S-Band   | 13.84    | 15.95 | 19.70 | 21.67 |
| Uplink                              | Eb/No from Yagi 1 | 47.83    | 50.75 | 54.50 | 56.47 |
| (Space Craft)                       | Eb/No from Yagi 2 | 44.70    | 47.61 | 51.36 | 53.33 |

We will need to decrease transmit power for UHF at the ground station.

#### Data Rate Analysis

Image Size: (640 x 512 pixels)(16 bits/pixel) = 5242880 bits/image

Compressed Image Size: (80%)(Image Size) = .8\*5242880 = 4194304 bits

Seconds/Compressed Image = (Compressed Image Size) / (Data Rate)

Images/ X min pass = (x \* 60 seconds) / (Seconds/ Compressed Image)

| Parameter                 | UHF Downlink | UHF Downlink<br>(No FCC<br>restriction) | S-Band Downlink |
|---------------------------|--------------|-----------------------------------------|-----------------|
| Data Rate                 | 9600 bps     | 115200 bps                              | 3000000 bps     |
| Seconds/ Compressed Image | 436.91       | 45.51                                   | 1.398           |
| Images/ 1 min pass        | .14          | 1                                       | 42              |
| Images/ 2 min pass        | .27          | 2                                       | 85              |
| Images/ 5 min pass        | .68          | 6                                       | 214             |
| Images/ 8 min pass        | 1            | 10                                      | 343             |

## Communications

### Comms - Top Level Risks

|         |              |  |       |                | ID    | Trend                                              | Risk                                                               | Mitigation Strategy                                     | Approach |
|---------|--------------|--|-------|----------------|-------|----------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|----------|
|         |              |  |       |                | CMR-1 | $\widehat{\mathbf{T}}$                             | Patch antenna<br>incompatibility with<br>system design             | Custom sized patch antenna                              | W        |
| elihood |              |  |       |                | CMR-2 |                                                    | Damage to<br>monopole UHF<br>antenna upon<br>deployment            | Lens cap deployment<br>tests, strong mounting<br>design | Μ        |
| Ч<br>Ч  |              |  | CMR-2 | CMR-4          | CMR-3 |                                                    | Data loss during operations                                        | Partner with other ground stations, robust              | М        |
|         |              |  |       | CMR-1<br>CMR-3 |       |                                                    |                                                                    | storage strategy                                        |          |
|         | Consequences |  |       | CMR-4          |       | Hardware failure<br>cause loss of<br>communication | Robust design, strong<br>testing of<br>communications<br>subsystem | Μ                                                       |          |

| Trend     | Approach     |
|-----------|--------------|
| 1mproving | A - Accept   |
| Worsening | M - Mitigate |
| Unchanged | R - Research |
| New       | W - Watch    |

### Challenges & Next Steps

Challenges

• Incorporating band choices without interrupting the current model

#### Next Steps

- Communication with NASA Spectrum Manager
  - Contact has been initialized, will begin process of applying for frequency license
- Updates to current link budget
  - Length of time each mode is operated in
  - Estimates of data losses over mission life
  - Better estimates of downlink opportunities to come with more accurate power, thermal models
- Develop test procedures for system verification during the spring semester
- Research into monopole antenna design
- Official selections of final hardware (S-Band Transceiver, patch antenna)
- Greater familiarity with communications subsystem

# **Mission Operations**

Sarah Rogers

#### Mission Operations Overview

- Mission Operations consists of all procedures to be carried out in preparation for, during, and after the Phoenix mission life in orbit
  - Monitor satellite health, oversee uplink/downlink schedule as well as return of science data
- Mission Operations Center ISTB4 will potentially be our base of operations
  - Otherwise, budget is reserved for a workstation, which will be provided by the team (includes computers and all necessary software)
- Mission operators shall consist of a individuals from each subsystem and will be responsible for all operations closely associated with their subsystem
  - Example: ADCS team will oversee target tracking and orbit propagation during operations
  - Operators will work alongside the Science team to ensure all operations are carried out in support of the science objective
- All mission operators will be trained to conduct all mission operations in case any position needs to be temporarily filled
  - All operations procedures will be documented throughout project development and guidebooks will be created to assist in training activities

### Mission Ops Requirements

| ID   | Requirement                                                                                                                                                                 | Rationale                                                                                                                                                                                  | Parent<br>Requirement | Verification  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|
| MO-1 | The Phoenix MOPS shall develop<br>the Mission Operations software<br>while abiding by the ASU Ground<br>Station ICD.                                                        | This software will be used to retrieve,<br>display, and/or process data to/from the<br>ASU Ground Station.<br>ICD will specify information exchange<br>between the ground station and MOPS |                       | Demonstrate   |
| MO-2 | The Phoenix MOPS shall have the memory capacity to store all satellite's mission data.                                                                                      | Based on maximum data generated over the course of satellite's mission                                                                                                                     |                       | Analysis      |
| MO-3 | The Phoenix MOPS shall monitor spacecraft and instrument health.                                                                                                            | Spacecraft health is important for completing the mission.                                                                                                                                 |                       | Analysis      |
| MO-4 | The Phoenix MOPS shall<br>generate, verify, and send<br>command sequences for the<br>spacecraft.                                                                            | MOPS will need to control the spacecraft through command sequences.                                                                                                                        |                       | Testing       |
| MO-5 | The Phoenix MOPS shall prepare<br>dataproducts for the science team<br>that will consist of the images<br>along with any additional telemetry<br>needed to study the image. | Creation of data products will allow the science team to complete the main science goals.                                                                                                  | PHX 2.04, 3.06        | Demonstration |

#### Mission Ops Requirements

| ID   | Requirement                                                                                                                    | Rationale                                                                                                                                                                       | Parent<br>Requirement | Verification  |
|------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|
| MO-6 | The Phoenix MOPS shall prepare<br>downlinked images for public<br>distribution.                                                | Data shall be made publicly available to<br>promote an education of the UHI<br>phenomenon, STEM fields, and<br>mitigation strategies                                            |                       | Demonstration |
| MO-7 | Phoenix MOps will prepare<br>backup procedures in case of<br>unexpected operations.                                            | When the satellite does not operate as<br>expected, there will be a known procedure<br>to return the spacecraft to known<br>operations and continue with mission<br>objectives. |                       | Testing       |
| MO-8 | Mission Operators will be trained<br>to operate the Ground Station by<br>the use of the Mission Operations<br>Center in ISTB4. | It is critical to have the mission operators cleared to work in the base of operations.                                                                                         |                       | Demonstration |

#### **Mission Operations - Top Level Risks**



#### Consequences

| Trend      | Approach     |
|------------|--------------|
|            | A - Accept   |
| Uversening | M - Mitigate |
| Unchanged  | R - Research |
| New        | W - Watch    |

#### **Mission Operations**

- Picture most passes over every chosen city
  - Orbits will be dedicated to either taking a picture or transmitting (s-band)
  - Phoenix, Los Angeles, and Houston are within transmit range
  - Passes that within 25 degrees of target city will be used for imaging, otherwise just for downlinking
- Downlink/Uplink
  - Health beacon data always downlinked
  - New images (with telemetry) downlink
  - Schedule of autonomy uplink
- Post-processing will recompile the pictures at mission ops stations
  - Checked for weather (from science hindcasting), calibration, & otherwise corrupted data
  - Determine calibration from photos taken if we need to adjust orbit
- Categorize images based on weather and ideal conditions
  - Not all just the pictures they deemed usable by hindcasting and calibration

#### Challenges & Next Steps

Challenges

• Uplinking commands, downlinking images, and taking a picture simultaneously

Next Steps

- Uplink/downlink schedule
  - Refined uplink and downlink schedule will come from more accurate STK simulations
- Development of ground station network between USIP Universities
- Identifying needs for Mission Operations to work
- Verifying Mission Operations alongside FlatSat testing
  - Commands and procedures will be monitored alongside flatsat development to prepare for in flight operations and to aid in the development of Ground Support Software
## Mission Ops Architecture and Software



This is the ASU Ground Station's system that we plan to be working with. Phoenix data will be sorted by the network, then can be viewed by the Workstation Computers to be processed and prepared for science.

## **Ground Station**

Jeremy Jakubowski

## **Ground Station Overview**



## Capabilities

### **Development Status**

#### **Ground Station Mission Operations Software**



## Challenges & Next Steps

Challenges

Next Steps

# **Break**

10 minutes



## **Electrical Power Subsystem**

**Raymond Barakat** 

## **EPS** Overview

#### • Solar Panel Configuration

- Trades done between nondeployable designs and deployable designs
  - Deployable design chosen
- Vendors under consideration: GOMSpace, ClydeSpace, SolAero
- Two 3U deployable panels (One is 6U- front and back), two body mounted 2U panels, one body mounted 3U panel
- Battery
  - 40Whr battery bank being considered from GOMSpace or ClydeSpace
  - Either 4 18650 cells or packaged lithium-ion cells (40Whr or 2 20Whr)
- Power distribution board
  - Vendors being considered GOMSpace or ClydeSpace
  - Needed voltages available: 5V, 3.3V, unregulated output

## **EPS Block Diagram**



## **EPS** Requirements

| ID     | Requirement                                                                                                   | Rationale                                                                                                            | Parent<br>Requirement | Verification                                                                             |
|--------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------|
| EPS -1 | EPS shall power all<br>components (Camera,<br>OBC, ADCS, Comms) with<br>required power for each<br>component. | Maintain system health.                                                                                              | PHX-3.01              | Analysis/Examination<br>OBC will monitor active<br>components and transmit<br>telemetry. |
| EPS -2 | Solar panels provide power<br>to battery and EPS shall<br>charge battery and maintain<br>battery health.      | Allows future battery usage for<br>backup power draw in case<br>solar panels cannot be used for<br>a period of time. | PHX-3.01              | Examination/Analysis<br>monitor battery voltage                                          |

## **EPS** - Top Level Risks

| ihood |  |       | EPR-3 |       |
|-------|--|-------|-------|-------|
| Likel |  | EPR-4 |       | EPR-2 |
|       |  |       |       | EPR-1 |

| ID    | Trend              | Risk                             | Mitigation Strategy          | Approach |
|-------|--------------------|----------------------------------|------------------------------|----------|
| EPR-1 | $\hat{\mathbf{U}}$ | Power supply too<br>small        | Deployable Design            | М        |
| EPR-2 |                    | Battery Malfunction              | Stress Testing               | М        |
| EPR-3 |                    | Deployable design doesn't deploy | Non-Deployable design scheme | W        |
| EPR-4 |                    | Voltage Anomaly                  | Pre-launch testing           | W        |

Consequences

| Trond     | Annraach     |
|-----------|--------------|
| Trend     | Арргоаст     |
|           | A - Accept   |
| Worsening | M - Mitigate |
| Unchanged | R - Research |
| New       | W - Watch    |

## **Solar Panel Configuration**

- Trade study done between nondeployable, full-cover deployable, and mid-level deployable.
- Mid-level deployable chosen because of more than sufficient power generation and cost



| Typical Orbit          | Non-Deployable | Mid-Range Deployable | Full-Deployable |
|------------------------|----------------|----------------------|-----------------|
| Energy/Orbit (Whr)     | 4.10           | 10.46                | 17.86           |
| 100 cm Units of Panels | 10             | 16                   | 22              |
| Total Cost Estimate    | \$30k          | \$50k                | \$71k           |

## Power Production STK Simulations for Mid-deployable

Nadir-pointing





**Articulated (9U face)** 





## **Component Power Consumption**

| Component          | Voltage (V) | Current Draw<br>(mA)                                                                             | Power (W)                                                                                          |
|--------------------|-------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| FLIR Camera        | 5           | 250 (operation)<br>600 (start)                                                                   | 1.25 (operation) 3<br>(start)                                                                      |
| UHF Transmitter    | 3.3         | 55 mA (RX) 800<br>mA(TX)                                                                         | 0.18(RX) 2.64 (TX)                                                                                 |
| S-Band Transmitter | 5           | 1200                                                                                             | 6                                                                                                  |
| Nanomind OBC       | 3.3         | 43 (64MHz-idle)<br>33 (32MHz-idle)<br>23 (8MHz-idle)<br>200 (max when<br>external flash<br>read) | .14 (64MHz-idle) .15<br>(32MHz-idle) .076<br>(8MHz-idle) 0.66<br>(max when external<br>flash read) |
| MAI ADCS           | 5           | 226                                                                                              | 1.13                                                                                               |

## Power Consumption-Full Operation Mode

| Component             | Power Draw<br>(W) | Duty Cycle<br>(%) | Operation Time<br>(hr) | Energy<br>(Whrs) |
|-----------------------|-------------------|-------------------|------------------------|------------------|
| FLIR Camera           | 1.25              | 100.00%           | 0.33                   | 0.417            |
| UHF Transmitter TX    | 2.64              | 5.00%             | 0.33                   | 0.044            |
| UHF Transmitter<br>RX | 0.1815            | 100.00%           | 0.33                   | 0.0605           |
| S-Band Transmitter    | 6                 | 80.00%            | 0.33                   | 1.6              |
| Nanomind OBC          | 0.2               | 100.00%           | 0.33                   | 0.067            |
| MAI ADCS              | 1.13              | 100.00%           | 0.33                   | 0.377            |
|                       |                   |                   | SUM                    | 2.5645           |

## Power Consumption- Idle Mode

|                       | Power Draw |                | Operation |               |
|-----------------------|------------|----------------|-----------|---------------|
| Component             | (W)        | Duty Cycle (%) | Time (hr) | Energy (Whrs) |
| UHF Transmitter<br>TX |            |                |           |               |
|                       | 2.64       | 5.00%          | 1.167     | 0.154         |
| UHF Transmitter<br>RX | 0.1815     | 100.00%        | 1.167     | 0.212         |
| Nanomind OBC          | 0.2        | 100.00%        | 1.167     | 0.233         |
| MAI ADCS              | 1.13       | 100.00%        | 1.167     | 1.318         |
|                       |            |                | SUM       | 1.917         |

## Total Consumption and Power Generation Budget

| Total Energy Consumption per orbit | Energy (Whr/orbit) |
|------------------------------------|--------------------|
| Full Operation                     | 2.5645             |
| Idle                               | 1.917              |
| TOTAL                              | 4.482              |

|                            | Deployed<br>(Nadir Pointing) | Deployed<br>(Articulation) | Stowed<br>(Nadir<br>Pointing) | Stowed<br>(Articulation) |
|----------------------------|------------------------------|----------------------------|-------------------------------|--------------------------|
| Average Power<br>(W/orbit) | 5.3                          | 7.6                        | 2.6                           | 5.15                     |
| Energy/Orbit (Whr)         | 7.3                          | 10.5                       | 4.1                           | 7.25                     |

## Challenges & Next Steps

Challenges

• Maintaining updated information on power used by components

Next Steps

- Finalize vendor decisions for panels, batteries, and boards
  - More information from different vendors (Blue Canyon Tech, etc.)
- Update STK simulations based on MOPs
- Get more accurate power usage data for better power budgets
- Verifying MOPs alongside FlatSat testing

## **Opto-Mechanics**

Jesus Acosta

## Overview

- Team will fundamentally understand the operations, hardware, and image processing of the camera.
- FLIR Tau 2 640 IR core with 100mm lens
  - Best case resolution (nadir): 68 meters per pixel
  - Worst case resolution\*: 110 meters per pixel
- Provides two digital output channels and one analog output channel
  - Disabling them saves power
- Provides an RS-232 channel for command and control
- Readiness time of 4 to 5 seconds



## Requirements

| ID   | Requirement                                                                                                                             | Rationale                                                                                                  | Parent<br>Requirement | Verification                                |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------|
| OM-1 | The camera's 6.2x5.0 deg field of view shall be unobstructed.                                                                           | In order to ensure that<br>science has an<br>unobstructed view of the<br>cities and the rural<br>landscape | PHX-3.01              | Physical testing                            |
| OM-2 | The camera core and lens<br>shall be securely mounted to<br>the CubeSat Chassis such<br>that they can survive the<br>launch environment | In order to ensure the integrity of the camera system.                                                     | PHX-3.01              | Shock, thermal,<br>and vibration<br>testing |
| OM-3 | The camera lens shall be<br>securely mounted to the<br>CubeSat Chassis such that it<br>will remain properly aligned.                    | In order to ensure the integrity of the images taken                                                       | PHX-3.07              | Mechanical<br>analysis and<br>testing       |
| OM-4 | The camera lens shall be filtered to wavelengths between 11.5 and 12.51um                                                               | In order to ensure<br>images are not<br>obstructed by water<br>vapor and other<br>particles.               | PHX-3.04              | Physical testing                            |

## Trade Study

|               | Model                | Tau 2 640               | Tamarisk 640        | TWV 640                   | EyeR 640 17u     |
|---------------|----------------------|-------------------------|---------------------|---------------------------|------------------|
|               | Manufacturer         | Flir                    | Sierra Olympic      | Вае                       | Opgal            |
| Physical      |                      |                         |                     |                           |                  |
|               | LxWxH                | 44.4 x 44.4 x<br>44.4mm | 73 x 73 x 106<br>mm | 26.2 x 33.27<br>x 22.86mm | 41x54x48.5mm     |
| Power         |                      |                         |                     |                           |                  |
|               | Input Voltage        | 4.0 - 6.0               | 5-5.5               | 2.0 - 5.5                 | 8-28             |
|               | Power<br>Dissipation | 1.2                     | 1.2                 | 1                         | <2.3W @ 25 C, 8V |
|               | Time to<br>Image     | < 5s                    | 2.5s                |                           |                  |
| Purchase Info |                      |                         |                     |                           |                  |
|               | Price                | \$9,421.50              | \$5,844             |                           |                  |

## Trade Study

|                          | Model                    | Tau 2 640                               | Tamarisk 640      | TWV 640          | EyeR 640 17u      |
|--------------------------|--------------------------|-----------------------------------------|-------------------|------------------|-------------------|
| Optical<br>Performance   |                          |                                         |                   |                  |                   |
|                          | Resolution               | 640x512                                 | 640x480           |                  | 640x480           |
|                          | Pixel Size               | 17                                      | 17                | 12               |                   |
|                          | Spectral Band            | 7.5 - 13.5                              | 8 - 14            | 7.5 - 13.5       | 7.5-14            |
|                          | Performance              | 50mk @ f/1.0                            | <50 mK f/1.0      |                  | 50mk @ f/1 lens   |
| Mechanical<br>Properties |                          |                                         |                   |                  |                   |
|                          | Operating<br>Temperature | -40C to +80C                            | -40C to +80C      | -40 C to 65<br>C | -40 C to 60 C     |
|                          | Storage<br>Temperature   | -55C to +95C                            | Not tested        | -46 C to 71<br>C |                   |
|                          | Shock                    | 200g shock<br>pulse w/ 11ms<br>sawtooth | 75 G (all axis)   |                  | meets MIL-STD-810 |
|                          | Vibration                | 4.3g 3 axes, 8<br>hours each            | 4.43 G (all axis) |                  | meets MIL-STD-810 |

## Challenges & Next Steps

Challenges

- Can't find company willing to create custom lens filter
- Some mentioned this could be very expensive (~\$15K)
- Companies that said no:
  - Deposition Sciences, Edmund Optics, Spectrogon, Iridian Spectral Technologies
- Maybe:
  - Reynard Corporation and Thorslab
- No response:
  - Umicore Electro-Optics and Materion

#### Next Steps

- Consider using dampening materials for mitigation of the camera lens vibration.
- Design a potential len cover that will be protect the lens from launch environment.
- Work with science team Decide what onboard image processing features we will want to use

## Structures

Brody Willard

## **Overview**





## Requirements

| ID    | Requirement                                                                                      | Rationale                                                                | Parent<br>Requirement | Verification                              |
|-------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------|-------------------------------------------|
| OM-5  | The cubesat chassis shall provide<br>mounting and clearance<br>accommodations for each component | To ensure that all hardware operates nominally                           |                       | Analysis,<br>Demonstration,<br>Inspection |
| OM-6  | The structure shall minimally obstruct the ADCS sensors' view                                    | To have attitude control                                                 | ADCS-                 | Demonstration,<br>Inspection              |
| OM-7  | All custom structures shall be designed with TBD factors of safety                               | To maintain structural integrity                                         | GEVS-xxx              | Test, Analysis                            |
| OM-8  | The lens cap deployment mechanism shall held shut by a holding torque of TBD                     | So it doesn't deploy inside<br>the p-pod dispenser or<br>during launch   |                       | Analysis, Test                            |
| OM-9  | The lens cap deployment mechanism shall provide a starting torque of TBD                         | To initiate rotation                                                     |                       | Analysis, Test                            |
| OM-10 | The lens cap shall have an acceleration of TBD                                                   | Meet requirement                                                         |                       | Analysis, Test                            |
| OM-11 | The lens cap shall decelerate as it reaches its final position to TBD                            | To prevent the lens from<br>breaking off or damaging<br>other components |                       | Analysis, Test                            |

## **Opto-Mechanics/Structures - Top Level Risks**



#### Consequences

| Trend     | Approach     |  |
|-----------|--------------|--|
|           | A - Accept   |  |
| Uvrsening | M - Mitigate |  |
| Unchanged | R - Research |  |
| New       | W - Watch    |  |

### Lens Cap Design

Pin in double shear, hot wire, motor for release mechanism



### **Camera Mount Designs**

#### Design 1



Design 2



## **Chassis Options**

- Evaluated based on volume, price, design, compatibility with chosen hardware
- Chassis has yet to be chosen

| Manufacturer  | Cost      | Compatibility |
|---------------|-----------|---------------|
| ISIS 3U       | \$4312.03 |               |
| Clydespace 3U | \$6900    |               |
| Custom*       | \$3981.18 |               |
| Pumpkin 3U    | Pending   |               |







Pumpkin

## **Challenges and Next Steps**

Challenges

- S-band antenna has large thickness
- ADCS placement

Next Steps

- Obtain all cubesat components and finish detailed model
- Complete camera mount and lens cap deployment designs
- Perform structural simulations
- If custom chassis is needed, start design for custom chassis
- Have all the above done by PDR

## Software

Bradley Cooley, Nicholas Downey

## Overview

- Responsible for the On Board Computer for Phoenix.
- Selected the GomSpace NanoMind A3200 for the On Board Computer.
- Integrating NASA's Core Flight Executive (cFE) and Core Flight System (cFS) to serve as the flight software for Phoenix.
- Also responsible for design and implementation of mission specific Ground Support Software.


## Flight Software Requirements

| ID    | Requirement                                                                                                      | Rationale                                                                                                                                                                                           | Parent<br>Requirement | Verification |
|-------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|
| FSW-1 | FSW shall read<br>Housekeeping telemetry<br>from other subsystems<br>according to the needs of<br>those systems. | Allows monitoring and<br>study of satellite health<br>and/or unexpected<br>behavior.                                                                                                                | SYS-6                 | Testing      |
| FSW-2 | FSW shall be able to<br>communicate with ASU<br>Ground Station                                                   | able to ASU ground station is the space link provider                                                                                                                                               |                       | Testing      |
| FSW-3 | FSW shall issue commands<br>according to schedules<br>uplinked by the Phoenix<br>team.                           | SW shall issue commands<br>cording to schedules<br>blinked by the Phoenix<br>am.<br>A schedule allows more<br>predictable execution of<br>mission objectives and<br>study of unexpected<br>behavior |                       | Testing      |
| FSW-4 | FSW shall reference Mission Elapsed Time to UTC.                                                                 | Science objectives require knowledge of time.                                                                                                                                                       | PHX-3.06              | Testing      |

## Flight Software Requirements

| ID    | Requirement                                                                                                        | Rationale                                                                                                                                                         | Parent<br>Requirement | Verification              |
|-------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------|
| FSW-5 | FSW shall collect and maintain position data at moment of image capture                                            | Provide image with<br>sufficient metadata to<br>identify and classify<br>image                                                                                    | PHX-3.07              | Testing                   |
| FSW-6 | FSW shall be able to receive<br>commands from a Ground<br>Support Software user via<br>the ASU Ground Station link | SW shall be able to receive<br>mmands from a Ground<br>upport Software user via<br>e ASU Ground Station linkRetrieval of science<br>data and other MOps<br>duties |                       | Testing                   |
| FSW-7 | FSW shall wait 30 minutes<br>after initial powerup to<br>deploy any deployables.                                   | Conform to CalPoly<br>CubeSat requirements.<br>Requirement 2.4.2                                                                                                  | SYS-2                 | Testing,<br>Demonstration |
| FSW-8 | FSW shall wait 30 minutes<br>after initial powerup to begin<br>any RF transmission.                                | Conform to CalPoly<br>CubeSat requirements.<br>Requirement 2.4.3                                                                                                  | SYS-2                 | Testing,<br>Demonstration |

## Ground Support Software Requirements

| ID    | Requirement                                                                           | Rationale                                                                         | Parent<br>Requirement | Verification  |
|-------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------|---------------|
| GSW-1 | GSS shall provide user<br>interface for mission ops<br>interaction with the satellite | Users must interface with the system                                              | MO-4                  | Demonstration |
| GSW-2 | GSS shall maintain a library of commands that the satellite recognizes                | User communicates<br>with satellite by sending<br>recognized commands.            | MO-4                  | Testing       |
| GSW-3 | GSS shall interface with the ASU Ground Station                                       | ASU Ground station is the space link provider                                     | SYS-8                 | Testing       |
| GSW-4 | GSS shall be able to display<br>science data in image<br>format to mission ops team   | Enables MOPS to<br>inspect satellite for<br>malfunction or<br>unexpected behavior | MO-3                  | Testing       |
| GSW-5 | GSS shall process and prepare data for delivery to science.                           | Science needs data in particular format                                           | PHX-3.09              | Testing       |

#### Software - Top Level Risks

|        |       |       |       |       | ID    | Trend             | Risk                     | Mitigation Strategy                            | Approach |
|--------|-------|-------|-------|-------|-------|-------------------|--------------------------|------------------------------------------------|----------|
|        | FSR-4 | FSR-1 |       |       | FSR-1 |                   | Radiation Effects        | Hardened Electronics<br>System restores/resets | M/A      |
| lihood |       |       | FSR-3 |       | FSR-2 |                   | Total Ionizing Dose      | Hardened Electronics                           | А        |
| Like   |       |       |       |       | FSR-3 |                   | Software Defects         | Agile Development<br>Strategy                  | М        |
|        |       |       |       | FSR-2 | FSR-4 | $\mathbf{\nabla}$ | Documentation<br>Defects | Documentation<br>Reviews                       | A        |

#### Consequences

| Trend     | Approach     |
|-----------|--------------|
|           | A - Accept   |
| Uvrsening | M - Mitigate |
| Unchanged | R - Research |
| New       | W - Watch    |

## Flight Software Architecture (NASA cFE/cFS)



- Open Source reduces development time
- Increases complexity of integration efforts

#### Hardware Interfaces



#### Hardware Trade Study Results

- NanoMind A3200 (Favored)
  - Average storage and performance
  - Good price
  - Very Good volume utilization
  - Very Good interfacability
- NanoMind Z7000
  - Very Good storage and performance with poor power usage tradeoff
  - Poor price
  - Average volume utilization
  - Good interfacability with complexity tradeoff

- NanoMind A712D
  - Good storage and performance
  - Average price
  - Average volume utilization
  - Very Good interfacability
- ISIS OBC
  - Good storage and performance
  - Good price
  - Average volume utilization
  - Average interfacability

#### Software Budget - Storage Memory

#### Storage Memory

- Flight Software
  - No greater than **20 MB** total
  - OSAL/cFE/cFS contribute 5 MB currently
- Science mission data
  - Infrared images and relevant metadata
  - Assuming 2 pictures per science target pass for one year of STK simulated orbit.
  - Roughly 320 MB minimum
- Housekeeping Telemetry
  - Largely TBD
  - Not feasible to store lifetime telemetry data
  - Worst case:
    - Longest span of time between communication target encounters
  - Telemetry read rates vary between subsystem

#### Software Challenges / Next Steps

- Mission specific ground support software
  - Possible integration of NASA Goddard open source applications
  - Working closely with Mission Operations team as it grows
  - Assess risks to Ground Support Software
- ASU Ground Station
  - Tailoring ground station software
  - Possible collaboration among satellite missions
- Next Steps:
  - FSW high-level design
    - Mission specific FSW apps
  - Ground support software solutions
  - Lab build and development environment

#### Software Schedule

- Flight Software Workshop at JPL December 12th 15th
- Flight Software design finished by January 9th
- Build and Development environments prepared by January 9th
- Agile Software Development Core Values
  - $\circ$   $\hfill \hfill \hf$
  - Working software over comprehensive documentation
  - Customer collaboration over contract negotiation
  - Responding to change over following a plan
- Phoenix and Agile
  - Preferred model for smaller teams
  - Getting "customers" hands on access to working software
  - Responsive to changing conditions

## Thermal

Ryan Czerwinski

#### **Thermal Overview**

- Responsible for the thermal control of Phoenix.
- Set and maintain temperature range of Phoenix and the temperatures of all of its components with use of a passive or active system.

## **Thermal Requirements**

| ID   | Requirement                                                                                    | Rationale                                                                                                             | Parent<br>Requirement | Verification                   |
|------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------|
| TH-1 | The thermal system shall take<br>up less than TBD volume within<br>the CubeSat                 | Aids in maintaining system health<br>and ensures that there is enough<br>space on board the CubeSat for<br>components | SYS-1                 | Analysis,<br>Examination, Test |
| TH-2 | Temperature sensors will relay relevant thermal information to C&DH                            | Telemetry for system health<br>diagnosis                                                                              | SYS-6                 | Analysis,<br>Examination, Test |
| TH-3 | The thermal subsystem shall have a total TBD mass                                              | Satellite mass budget constraints                                                                                     | SYS-1                 | Analysis,<br>Examination, Test |
| TH-4 | The thermal subsystem shall<br>have a power usage of no more<br>than TBD watts orbital average | Maintain system health                                                                                                | EPS-1                 | Analysis,<br>Examination, Test |

## **Thermal Requirements**

| ID   | Requirement                                                                                                                                   | Rationale                 | Parent<br>Requirement | Verification                   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|--------------------------------|
| TH-5 | The thermal system shall<br>maintain the ADCS survival and<br>operating temperatures                                                          | Maintain ADCS health      | SYS-5                 | Analysis,<br>Examination, Test |
| TH-6 | The thermal system shall maintain the camera survival temperatures between -55°C and 95°C, and operating temperatures between -40°C and 80°C. | Maintain camera health    | SYS-5                 | Analysis,<br>Examination, Test |
| TH-7 | The thermal system shall<br>maintain the EPS board survival<br>temperatures and operating<br>temperatures                                     | Maintain EPS board health | SYS-5                 | Analysis,<br>Examination, Test |
| TH-8 | The thermal system shall<br>maintain the EPS battery<br>survival and operating<br>temperatures                                                | Maintain battery health   | SYS-5                 | Analysis,<br>Examination, Test |

## **Thermal Requirements**

| ID    | Requirement                                                                                                           | Rationale                | Parent<br>Requirement | Verification                   |
|-------|-----------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|--------------------------------|
| TH-9  | The thermal system shall<br>maintain the Communication<br>hardware survival and operating<br>temperatures between TBD | Maintain battery health  | SYS-5                 | Analysis,<br>Examination, Test |
| TH-10 | The thermal system shall<br>maintain the Cube Computer<br>operating temperatures                                      | Maintain computer health | SYS-5                 | Analysis,<br>Examination, Test |

#### Thermal - Top Level Risks

|          |      |        |        |   |      | ID   | Trend | Risk                                                                | Mitigation Strategy                                | Approach |
|----------|------|--------|--------|---|------|------|-------|---------------------------------------------------------------------|----------------------------------------------------|----------|
| q        |      |        |        |   |      | TR-1 |       | Temperature<br>sensors of<br>components stop<br>working             | Health Checks                                      | W        |
| ikelihoo | TD 1 |        |        |   | TR-4 | TR-2 |       | Components reach<br>or exceed survival<br>temperatures              | Thermal<br>Insulation/Conductors                   | M, R     |
|          | TR-3 |        |        |   | TR-2 | TR-3 |       | Sensor failure                                                      | Health Checks                                      | W        |
|          | (    | Consec | quence | S |      | TR-4 |       | Camera Sensor not<br>reaching thermal<br>equilibrium for<br>imaging | Analysis, relocation of heat-generating components | M, R     |

| Trend     | Approach     |
|-----------|--------------|
|           | A - Accept   |
| Vorsening | M - Mitigate |
| Unchanged | R - Research |
| New       | W - Watch    |

#### **Component Temperatures**

| Component               | Mass (g) | Power (W) | Min.<br>Operating<br>Temp. | Max<br>Operating<br>Temp. | Min<br>Survival<br>Temp. | Max<br>Survival<br>Temp. |
|-------------------------|----------|-----------|----------------------------|---------------------------|--------------------------|--------------------------|
| ADCS                    | 694      | 1.13      | -40°C                      | 80°C                      | -40°C                    | 80°C                     |
| Camera                  | 479      | 1.25      | -40°C                      | 80°C                      | -55°C                    | 95°C                     |
| Comms(ANT<br>100)       | 10-100   | 2.64      | -40°C                      | 85°C                      | _                        | -                        |
| NanoMind<br>A3200       | 14       | 0.132     | -30°C                      | 85°C                      | _                        | -                        |
| Nano AX100              | 24.5     | 1         | -30°C                      | 85°C                      | -                        | -                        |
| S-Band<br>TX-2400       | 70       | 1-5       | -20°C                      | 70°C                      | -                        | -                        |
| NanoDock<br>DMC-3       | 51       | N/A       | -40°C                      | 85°C                      | _                        | -                        |
| Clydespace<br>EPS board | 86       | 0.1       | -40°C                      | 85°C                      | _                        | -                        |
| Battery for<br>EPS      | 447      | 0.1       | -20°C                      | 85°C                      | -                        | -                        |

## **Thermal Control Methods**

#### **Passive Techniques**

- Coatings (surface finishes and paints)
  - Control the Absorptivity and Emissivity
- Insulation
  - Multilayer insulation (MLI)
  - Single-layer radiation shields
- Conduction Isolators
  - Isolate components to control local temperature requirements
- Thermal Radiators
  - Dissipate excess heat from satellite to space

#### Active Techniques

- Heaters
  - Patch heaters
  - Cartridge heater
- Louvers
  - Venetian-blind
  - Controls the effectiveness of radiators
- Heating Pipes
  - Transfer Heat from a location to another

#### Thermal Cases (Safe Mode)



#### Challenges & Next Steps

- Creating a simulation that runs with respect to time
- Create simulations that will show the heat between interfaces
- Research on Small heat distribution from Wires, small chips, etc.
- Run more simulation to determine the use of additional heaters
- Run simulations of different scenarios on Ansys and thermal desktop and compare values

# Program Schedule, Budget & Risks

PHOENIX

Sarah Rogers

### **Budget Allocations**

| Overview - Hardware Budget              |            |                                                                                   |  |  |  |
|-----------------------------------------|------------|-----------------------------------------------------------------------------------|--|--|--|
| Allocation                              | Amount     | Notes                                                                             |  |  |  |
| NASA USIP Grant                         | \$198,128  | Amount allocated through the NASA USIP partnership                                |  |  |  |
| ASU/NASA Space Grant Support            | \$3,600    | Used to aid satellite development as well as interdisciplinary efforts of Phoenix |  |  |  |
| Total Hardware Cost (current estimates) | -\$167,380 | Estimated Costs                                                                   |  |  |  |
| Remaining Budget (Hardware)             | \$34,348   |                                                                                   |  |  |  |

| FlaSat Hardware                              |                     |          |  |  |  |  |  |
|----------------------------------------------|---------------------|----------|--|--|--|--|--|
| Item                                         | Cost                | Timeline |  |  |  |  |  |
| ATMEL UC3C-EK                                | \$350.00            | Arrived  |  |  |  |  |  |
| FLIR Tau 2 640 EM Camera                     | \$6,000             | Arrived  |  |  |  |  |  |
| EM S-Band Radio antenna                      | \$2,500 (estimated) | December |  |  |  |  |  |
| MAI-400 test bed                             | \$8,415.00          | Shipping |  |  |  |  |  |
| structure material (for early models, tests) | \$1,500 (estimated) | January  |  |  |  |  |  |
| Test Battery                                 | \$150 (estimated)   | December |  |  |  |  |  |

#### **Budget Allocations**

| Final hardware                                     |                     |             |
|----------------------------------------------------|---------------------|-------------|
| Item                                               | Cost                | Timeline    |
| MAI-400 ADCS                                       | \$42,000.00         | summer 2017 |
| S-Band Radio Transceiver                           | \$3,800             | summer 2017 |
| S-Band Patch Antenna                               | \$4,000             | summer 2017 |
| UHF Monopole Antenna                               | \$20.00 (estimated) | summer 2017 |
| AX-100 (UHF transceiver)                           | \$6,945.44          | summer 2017 |
| 3U Single Deployable Solar Panels                  | \$15,400.00         | summer 2017 |
| 3U Non-Deployable Solar Panels                     | \$5,700             | summer 2017 |
| 2U Solar Panels                                    | \$4,400             | summer 2017 |
| support structure<br>(camera and component mounts) | \$2,000 (estimated) | summer 2017 |
| Dunmore Aerospace SATKIT (Thermal)                 | \$500.00            | summer 2017 |
| 3U ISIS Chassis structure                          | \$4,000.00          | summer 2017 |

#### **Budget Allocations**

| Final Hardware - Continued                                          |            |             |
|---------------------------------------------------------------------|------------|-------------|
| Item                                                                | Cost       | Timeline    |
| Tau 2 640 IR camera                                                 |            |             |
| (with 100mm lens)                                                   | \$8,500.00 | summer 2017 |
| Tau 640 Custom IR Filter                                            | TBD        | summer 2017 |
| NanoMind 3200                                                       | \$7,250    | summer 2017 |
| NanoDock DMC-3                                                      | \$3,300    | summer 2017 |
| GomSpace SDK for NanoMind 3200                                      | \$1,250.00 | Summer 2017 |
| 3U EPS + 40Whr Battery                                              | \$9,000.00 | summer 2017 |
| Mission Operations Support<br>(Computer, Ground Station Operations) | \$5,000    | Spring 2017 |

#### Path to PDR

| Phase R: Preliminary Design | 30/09/16 01:00    | 30/04/17 02:00               | 30.20 | Phase B: Preliminary Design                     |
|-----------------------------|-------------------|------------------------------|-------|-------------------------------------------------|
| Erequency Licensing         | 04/11/16 01:00    | 30/04/17 02:00               | 25.20 | Frequency Licensing                             |
| Rudget Development          | 30/00/16 01:00    | 11/11/16 01:00               | 6.00  | Budget Development                              |
| budget Development          | 30/09/10 01:00    | 11/11/10 01:00               | 4.74  | link budget                                     |
| link budget                 | 30/10/16 01:00    | 11/11/16 01.00               | 1./1  | orbit analysis                                  |
| orbit analysis              | 30/10/16 01:00    | 11/11/16 01:00               | 1.71  | power budget                                    |
| power budget                | 30/09/16 01:00    | 11/11/16 01:00               | 6.00  | momontum budgot                                 |
| momentum budget             | 30/09/16 01:00    | 1 <mark>1/11/16 01:00</mark> | 6.00  | inomentum budget                                |
| mass budget                 | 30/09/16 01:00    | 11/11/16 01:00               | 6.00  | mass budget                                     |
| + Add a task   Add a m      | nilestone         |                              |       |                                                 |
| Preliminary CAD Model       | 28/10/16 01:00    | 09/11/16 01:00               | 1.71  | Preliminary CAD Model                           |
| Proposal updates for NASA   | 15/10/16 01:07    | 07/11/16 04:07               | 3.30  | Proposal updates for NASA                       |
| MDR                         | 11/11/16 02:00    | 11/11/16 02:00               |       |                                                 |
| CSLI application Due        | 22/11/16 06:00    | 22/11/16 06:00               |       | CSLI application Due                            |
| Operations Planning and D   | c 01/10/16 00:00  | 11/02/17 00:00               | 19.00 | Operations Planning and Documentation ~ 40%     |
| Interface Control Document  | ti 01/10/16 00:00 | 22/12/16 00:00               | 11.71 | Interface Control Documentation                 |
| Full Software design        | 07/10/16 01:00    | 09/01/17 02:00               | 13.43 | Full Software design                            |
| Structures Design (camera   | 1 14/10/16 01:00  | 09/01/17 01:00               | 12.43 | Structures Design (camera mount, lens cap)      |
| Complete Circuit Board Des  | s 21/10/16 01:00  | 09/01/17 01:00               | 11.43 | Complete Circuit Board Design                   |
| Test Procedure Developme    | r 28/10/16 01:00  | 06/02/17 02:00               | 14.43 | Test Procedure Development                      |
| deployable solar panel desi | ç 12/11/16 01:00  | 10/02/17 02:00               | 12.86 | deployable solar panel design to 60% completion |
|                             |                   |                              |       |                                                 |

#### Path to PDR

|          | · · · · · · · · · · · · · · · · · · · |                |                | 10,000,000 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                |                      |                   | 1                    | 100             |                 |      |
|----------|---------------------------------------|----------------|----------------|------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|----------------------|-------------------|----------------------|-----------------|-----------------|------|
| 1.1.2.13 | deployable solar panel desiç          | 12/11/16 01:00 | 10/02/17 02:00 | 12.86      | ct                              | Nov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dec          | Jan<br>Structu | Feb<br>ires Design ( | Mar<br>camera mou | Apr<br>nt, lens cap) | May             | Jun             |      |
| 1.1.2.14 | Thermal Training (ANSYS, 1            | 11/11/16 01:00 | 09/01/17 02:00 | 8.43       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | Comple         | ete Circuit Bo       | oard Design       |                      |                 |                 |      |
| 1.1.2.15 | Preliminary Thermal modelin           | 01/12/16 00:00 | 23/01/17 00:00 | 7.57       |                                 | Test P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rocedure Dev | elopment       |                      |                   |                      |                 |                 |      |
| 1.1.2.16 | In-Lab Ground Station simul           | 12/12/16 01:00 | 31/01/17 02:00 | 7.15       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                | deplo                | yable solar p     | anel design t        | to 60% compl    | etion           |      |
| 1.1.2.17 | Battery EM development                | 19/12/16 02:00 | 09/01/17 02:00 | 3.00       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _            | Therma         | al Training (A       | NSYS, Therr       | nal Desktop)         |                 |                 |      |
| 1.1.2.18 | LCZs mapped for all target of         | 13/12/16 01:00 | 20/01/17 01:00 | 5.43       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                | Preliminary Th       | nermal model      | simulations          |                 |                 |      |
| 1.1.2.19 | City coordinate mapping for           | 03/01/17 01:00 | 10/02/17 02:00 | 5.43       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | Battery        | EM develor           | oment             | SITIUIATIONS         |                 |                 |      |
| 1.1.2.20 | target tracking/orbit propaga         | 20/01/17 13:00 | 16/03/17 13:00 | 7.86       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | LC             | Zs mapped            | for all target    | cities               |                 |                 |      |
| 1.1.2.21 | On-orbit schedule developm            | 19/12/16 01:00 | 17/02/17 01:00 | 8.57       |                                 | City coordinate mapping for operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                |                      |                   |                      |                 |                 |      |
| 1.1.2.22 | develop ground station softv          | 09/01/17 01:00 | 21/04/17 02:00 | 14.58      |                                 | Image: target tracking/orbit propagation estima       On-orbit schedule development       Image: target tracking/orbit propagation estima       Image: target target target tracking/orbit propagation estima       Image: target |              |                |                      |                   | tion estimates       | 5               |                 |      |
| 1.1.2.23 | CSLI Manifestation Notificat          | 08/02/17 01:00 | 08/02/17 01:00 |            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                |                      |                   |                      |                 |                 |      |
| 1.1.2.24 | > FlatSat Development                 | 19/12/16 01:00 | 11/03/17 01:00 | 11.71      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                |                      |                   |                      |                 |                 |      |
| 1.1.2.25 | Mission Operations Testing            | 23/01/17 01:00 | 24/03/17 03:00 | 8.58       | CSLI Manifestation Notification |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                |                      |                   |                      |                 |                 |      |
| 1.1.2.26 | Monopole antenna design               | 23/01/17 02:00 | 27/02/17 02:00 | 5.00       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | ThatGat DC     | сортен               |                   | Mission Oper         | rations Testing | g and verificat | tion |
| 1.1.2.27 | Spring Recruitment                    | 23/01/17 01:00 | 13/02/17 02:00 | 3.01       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                |                      | Monopole          | antenna desi         | ign             |                 |      |
| 1.1.2.28 | New recruit training and esta         | 13/02/17 08:00 | 20/02/17 08:00 | 1.00       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                | Spri                 | ng Recruitme      | ent                  |                 |                 |      |
| 11229    | PDR                                   | 18/02/17 01:07 | 18/02/17 01:07 |            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                |                      | lew recruit tra   | aining and es        | stablisment     |                 |      |
| 1 1 2 30 | Telemetry simulations/Testin          | 30/01/17 02:00 | 17/03/17 02:00 | 6.57       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                |                      | PDR               |                      |                 |                 |      |
|          |                                       | 00.011102.00   |                | 0.01       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                |                      | Tel               | emetry simul         | ations/Testing  | 61              |      |

2017

#### Path to CDR

| Phase C: Critical Design     | 17/02/17 01:00    | 30/06/17 08:00 | 19.04 |                                                |
|------------------------------|-------------------|----------------|-------|------------------------------------------------|
| Management Transition        | 13/03/17 07:00    | 13/03/17 07:00 |       | Phase C: Critical Design                       |
| Mission Operations Proced    | ι 20/02/17 01:00  | 16/06/17 01:00 | 16.57 | Management Transition                          |
| System Design Verification   | 17/02/17 01:00    | 13/06/17 01:00 | 16.57 | Mission Operations Procedures ~ 80% Completion |
| Structures development an    | d 20/02/17 01:00  | 25/04/17 01:00 | 9.14  | System Design Verification                     |
| Finalize solar panel design  | 20/02/17 01:00    | 31/03/17 01:00 | 5 57  | Structures development and testing             |
| Final Thermal models         | 17/02/17 01:00    | 24/05/17 02:00 | 13 72 | Finalize solar panel design                    |
| Final EDS design             | 20/02/17 01:00    | 12/04/17 01:00 | 7.20  | Final Thermal models                           |
| Filial EFS design            | 20/02/17 01.00    | 12/04/17 01:00 | 1.29  | Final EPS design                               |
| communications schedule r    | € 20/02/17 01:00  | 20/04/17 01:00 | 8.43  | communications schedule refinement             |
| Finalize Flight Test procedu | II 25/02/17 01:00 | 09/06/17 01:00 | 14.86 | Finalize Flight Test procedures                |
| Deployable design tests      | 31/03/17 01:00    | 31/05/17 01:00 | 8.71  | Deployable design tests                        |
| Final CAD model              | 15/05/17 07:00    | 02/06/17 07:00 | 2.57  | Final CAD model                                |
| Clean room training          | 22/05/17 07:00    | 26/05/17 08:00 | 0.58  | Clean room training                            |
| CDR                          | 16/06/17 02:24    | 16/06/17 02:24 |       | CDR                                            |
| Flight Component Orders      | 19/06/17 08:00    | 30/06/17 08:00 | 1.57  | Flight Component Orders                        |
|                              |                   |                |       |                                                |

#### **Integration and Test**

| 1.1.4    | <ul> <li>Phase D: Integration and Test</li> </ul> | 17/06/17 01:00 | 26/01/18 02:00 | 31.86 |
|----------|---------------------------------------------------|----------------|----------------|-------|
| 1.1.4.1  | Finalize Mission Operations                       | 17/06/17 01:00 | 05/09/17 01:00 | 11.43 |
| 1.1.4.2  | System AIT                                        | 17/06/17 01:00 | 12/01/18 01:00 | 29.86 |
| 1.1.4.3  | Verified orbit and LV                             | 14/08/17 01:00 | 14/08/17 01:00 |       |
| 1.1.4.4  | Mission Operations Training                       | 25/09/17 01:00 | 25/01/18 03:00 | 17.44 |
| 1.1.4.5  | committed to ground station                       | 29/09/17 01:00 | 29/09/17 01:00 |       |
| 1.1.4.6  | Vibrations testing                                | 09/10/17 02:00 | 21/10/17 02:00 | 1.71  |
| 1.1.4.7  | Test of Full software                             | 20/10/17 01:00 | 04/11/17 03:00 | 2.15  |
| 1.1.4.8  | Thermal testing                                   | 06/11/17 02:00 | 21/11/17 02:00 | 2.14  |
| 1.1.4.9  | Basic DITL Testing                                | 27/11/17 01:00 | 27/11/17 01:00 |       |
| 1.1.4.10 | Range Readiness Review                            | 15/12/17 02:00 | 15/12/17 02:00 |       |
| 1.1.4.11 | Flight Readiness Review                           | 26/01/18 02:00 | 26/01/18 02:00 |       |



#### **Risks - Cost**



| ID   | Trend | Risk                                                      | Mitigation Strategy                                                                                  | Approach |
|------|-------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------|
| CST1 |       | Development of a<br>FlatSat                               | Aid from industry, apply for<br>SURP funding, trade studies<br>to determine what is/is not<br>needed | W        |
| CST2 |       | Collaboration with<br>other University<br>Ground Stations | Develop ground station<br>software before October<br>2017 to reduce cost,<br>increase accessibility  | R/M      |

Consequences

| Trend     | Approach     |  |  |  |
|-----------|--------------|--|--|--|
|           | A - Accept   |  |  |  |
| Worsening | M - Mitigate |  |  |  |
| Unchanged | R - Research |  |  |  |
| New       | W - Watch    |  |  |  |

#### **Risks - Schedule**

|                      |       |  |              |          |      | IC   | C  | Trend                             | Risk                                                                                                  | Mitigation Strategy                                   | Approach |
|----------------------|-------|--|--------------|----------|------|------|----|-----------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------|
| _                    |       |  |              |          |      | SCI  | D1 |                                   | Reported issues<br>with MAI, FLIR<br>products                                                         | Strong test procedures to determine faults in product | W        |
| elihooc              |       |  | SCD3<br>SCD2 | SCD4     |      | SCI  | D2 |                                   | Uncertainty of<br>Launch Window                                                                       | Work with NASA and the CSLI                           | М        |
| Like                 |       |  |              |          |      | SCD3 |    | 3                                 | Undergraduate<br>Student Team                                                                         | Younger students are recruited to be mentored.        | W        |
|                      |       |  |              |          | SCD1 |      |    |                                   |                                                                                                       | larger teams are<br>established due to<br>turnover    |          |
| Consequences         |       |  |              |          | SCI  | D4   |    | Ground Station<br>Completion date | Assemble software team<br>to build ground station<br>software, collaborate<br>with other universities | Μ                                                     |          |
|                      | Trend |  |              | Approach | ו    |      | I  |                                   |                                                                                                       |                                                       |          |
| Improving A - Accept |       |  |              |          |      |      |    |                                   |                                                                                                       |                                                       |          |

|           | A - Accept   |
|-----------|--------------|
| Worsening | M - Mitigate |
| Unchanged | R - Research |
| New       | W - Watch    |

